1,594 research outputs found

    Analysis of dynamic inlet distortion applied to a parallel compressor model

    Get PDF
    An investigation of surge was conducted by using a parallel compressor model of the J85-13 compressor implement on an analog computer. Surges were initiated by various types of dynamic disturbances in inlet pressure. The compressor model was less sensitive to disturbances of short duration, high frequency, and long duration where the compressor discharge pressure could react. Adding steady distortion to dynamic disturbances reduced the amount of dynamic disturbance required to effect surge. Steady and unsteady distortions combined linearly to reduce surge margin

    Ferromagnetic insulating state in tensile-strained LaCoO3_3 thin films

    Full text link
    With local density approximation + Hubbard UU (LDA+UU) calculations, we show that the ferromagnetic (FM) insulating state observed in tensile-strained LaCoO3_3 epitaxial thin films is most likely a mixture of low-spin (LS) and high-spin (HS) Co, namely, a HS/LS mixture state. Compared with other FM states, including the intermediate-spin (IS) state (\textit{metallic} within LDA+UU), which consists of IS Co only, and the insulating IS/LS mixture state, the HS/LS state is the most favorable one. The FM order in HS/LS state is stabilized via the superexchange interactions between adjacent LS and HS Co. We also show that Co spin state can be identified by measuring the electric field gradient (EFG) at Co nucleus via nuclear magnetic resonance (NMR) spectroscopy

    Relative phase stability and lattice dynamics of NaNbO3_3 from first-principles calculations

    Full text link
    We report total energy calculations for different crystal structures of NaNbO3_3 over a range of unit cell volumes using the all-electron full-potential (L)APW method. We employed both the local-density approximation (LDA) and the Wu-Cohen form of the generalized gradient approximation (GGA-WC) to test the accuracy of these functionals for the description of the complex structural behavior of NaNbO3_3. We found that LDA not only underestimates the equilibrium volume of the system but also predicts an incorrect ground state for this oxide. The GGA-WC functional, on the other hand, significantly improves the equilibrium volume and provides relative phase stability in better agreement with experiments. We then use the GGA-WC functional for the calculation of the phonon dispersion curves of cubic NaNbO3_3 to identify the presence of structural instabilities in the whole Brillouin zone. Finally, we report comparative calculations of structural instabilities as a function of volume in NaNbO3_3 and KNbO3_3 to provide insights for the understanding of the structural behavior of K1−x_{1-x}Nax_xNbO3_3 solid solutions.Comment: Accepted for publication in Physical Review

    Electronic structure of copper intercalated transition metal dichalcogenides: First-principles calculations

    Full text link
    We report first principles calculations, within density functional theory, of copper intercalated titanium diselenides, CuxTiSe2, for values of x ranging from 0 to 0.11. The effect of intercalation on the energy bands and densities of states of the host material is studied in order to better understand the cause of the superconductivity that was recently observed in these structures. We find that charge transfer from the copper atoms to the metal dichalcogenide host layers causes a gradual reduction in the number of holes in the otherwise semi-metallic pristine TiSe2, thus suppressing the charge density wave transition at low temperatures, and a corresponding increase in the density of states at the Fermi level. These effects are probably what drive the superconducting transition in the intercalated systems.Comment: 8 pages, 6 figure

    Ultraviolet spectroscopy of the brightest supergiants in M31 and M33

    Get PDF
    Ultraviolet spectroscopy from the IUE, in combination with groundbased visual and infrared photometry, are to determine the energy distributions of the luminous blue variables, the Hubble-Sandage variables, in M31 and M33. The observed energy distributions, especially in the ultraviolet, show that these stars are suffering interstellar reddening. When corrected for interstellar extinction, the integrated energy distributions yield the total luminosities and black body temperatures of the stars. The resulting bolometric magnitudes and temperatures confirm that these peculiar stars are indeed very luminous, hot stars. They occupy the same regions of the sub B01 vs. log T sub e diagram as do eta Car, P Cyg and S Dor in our galaxy and the LMC. Many of the Hubble-Sandage variables have excess infrared radiation which is attributed to free-free emission from their extended atmospheres. Rough mass loss estimates from the infrared excess yield rates of 0.00001 M sub annual/yr. The ultraviolet spectra of the H-S variables are also compared with similar spectra of eta Car, P Cyg and S For

    Are the renormalized band widths in TTF-TCNQ of structural or electronic origin? - An angular dependent NEXAFS study

    Get PDF
    We have performed angle-dependent near-edge x-ray absorption fine structure measurements in the Auger electron yield mode on the correlated quasi-one-dimensional organic conductor TTF-TCNQ in order to determine the orientation of the molecules in the topmost surface layer. We find that the tilt angles of the molecules with respect to the one-dimensional axis are essentially the same as in the bulk. Thus we can rule out surface relaxation as the origin of the renormalized band widths which were inferred from the analysis of photoemission data within the one-dimensional Hubbard model. Thereby recent theoretical results are corroborated which invoke long-range Coulomb repulsion as alternative explanation to understand the spectral dispersions of TTF-TCNQ quantitatively within an extended Hubbard model.Comment: 6 pages, 5 figure

    Systematic investigation of a family of gradient-dependent functionals for solids

    Full text link
    Eleven density functionals are compared with regard to their performance for the lattice constants of solids. We consider standard functionals, such as the local-density approximation and the Perdew-Burke-Ernzerhof (PBE) generalized-gradient approximation (GGA), as well as variations of PBE GGA, such as PBEsol and similar functionals, PBE-type functionals employing a tighter Lieb-Oxford bound, and combinations thereof. Several of these variations are proposed here for the first time. On a test set of 60 solids we perform a system-by-system analysis for selected functionals and a full statistical analysis for all of them. The impact of restoring the gradient expansion and of tightening the Lieb-Oxford bound is discussed, and confronted with previous results obtained from other codes, functionals or test sets. No functional is uniformly good for all investigated systems, but surprisingly, and pleasingly, the simplest possible modifications to PBE turn out to have the most beneficial effect on its performance. The atomization energy of molecules was also considered and on a testing set of six molecules, we found that the PBE functional is clearly the best, the others leading to strong overbinding

    NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    Get PDF
    We present a benchmark of the density functional linear response calculation of NMR shieldings within the Gauge-Including Projector-Augmented-Wave method against all-electron Augmented-Plane-Wave++local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.Comment: 3 figures, supplementary material include

    Many-body Electronic Structure of Metallic alpha-Uranium

    Full text link
    We present results for the electronic structure of alpha uranium using a recently developed quasiparticle self-consistent GW method (QSGW). This is the first time that the f-orbital electron-electron interactions in an actinide has been treated by a first-principles method beyond the level of the generalized gradient approximation (GGA) to the local density approximation (LDA). We show that the QSGW approximation predicts an f-level shift upwards of about 0.5 eV with respect to the other metallic s-d states and that there is a significant f-band narrowing when compared to LDA band-structure results. Nonetheless, because of the overall low f-electron occupation number in uranium, ground-state properties and the occupied band structure around the Fermi energy is not significantly affected. The correlations predominate in the unoccupied part of the f states. This provides the first formal justification for the success of LDA and GGA calculations in describing the ground-state properties of this material.Comment: 4 pages, 3 fihgure
    • …
    corecore